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Abstract—The paper deals with the analysis of simultaneous heat and mass transf
multicomponent vapour in the presence of inert components. The results of numencal calculations of
condensers, based on the solution of the individual versions of process model, resulting from the different

degorinti £ onulti i neri i
description of multicomponent mass transfer, have been compared with the experimental data available It

has been found that best agreement was obtained in the case of variant based on Krishna-Standart method,
whereas the shortest computing time was needed for the variant based on Burghardt-Krupiczka method
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yielding the results differing not significantly from the most accurate ones.

arithmetic-mean of concentrations of com-

NOMENCLATURE Vis
coefficients of the inverted matrix of diffusion ~ ponent i.m diffusional layer;
coefficients in a multicomponent mixture; ¥, arithmetic-mean of total concentrations of
inverted matrix of diffusion coefficients in a }nert components in diffusional layer;
multicomponent mixture Yim,» integral-mean oftotal concentrations of inert

specific heat at constant pressure;

binary coefficient of diffusion of component i
through j;

matrix of diffusion coefficients in multicom-

components in diffusional layer.

Greek symbols

ponent mixture; o, local heat-transfer coefficient
geometric surface area of wall on the va- a*,  corrected heat-transfer coefficient;
pour—gas side; g, combined heat-transfer coefficient;
mass flow rate; %  corrected mass-transfer coefficient in a bi-
diffusional mass flux of component i with nary system i, j;
respect to the molal average velocity of B*(D), B(D’), matrix of mass-transfer coefficients;
mixture; Py liquid-phase activity coefficient;
column vector of diffusional mass fluxes; d;;»  Kronecker’s delta;
total mass flux of component i; ¢, fugacity coefficient ;
column vector of total mass fluxes; ®, coefficient defined by equation (4b);
saturation vapour pressure of component i ; 0,, correction factor accounting for the effect of
total pressure; finite fluxes N; on a value;
bootstrap solution matrix; g, correction factor accounting for the effect of
elements of bootstrap solution matrix; finite fluxes N,
heat‘ flux per unit area; . Subscripts
gas-interface heat flux per unit area of surface
F: c, refers to liquid phase;
interface-coolant heat flux per unit area of 9, refers to gascous phase;
surface F; i,j, refer to mixture components ;
latent heat of vaporization m, mean value;
temperature ; w, refers to coolant;
z, refers to conditions at gas-liquid interface.

mole fraction of component i in liquid phase;
mole fraction of component i in gaseous
phase;

column vector of mole fractions;

+ Presented at CHISA Congress Prague, August 1978.

1. INTRODUCTION

CONDENSATION of mixed vapours in the presence of
inert gases occurs very often in technological pro-
cesses. Because of simultaneous momentum, heat and
mass transfer, the exact quantitative approach is
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rather difficult, particularly for systems most often
occurring in practice, i.e. multicomponent ones.

So, in spite of the fact that the fundamental laws of
condensation process have been already formulated in
the 1930s by Othmer, Colburn, Hougen and Drew
[1-3], the majority of studies carried out in the past
concerned the simplest case of condensation in the
presence of inerts, i.e. the condensation of a single
vapour. An exact and general mathematical model of
this case, enabling the design of condensers, has been
worked out only two years ago [4,5].

The problem of condensation of multicomponent
vapours in the presence of inert gases has been subject
of a few works only. Among them, two principal
groups may be distinguished, namely:

t. The group of works [6-8], which apart from the
suggestion of methods of the design of condensers,
basing on larger or smaller number of simplifying
assumptions (constancy of physico-chemical proper-
ties, absence of interaction between diffusing com-
ponents, use of mean driving forces and of mean
flowrates, restriction to the systems: binary vapour
plus inert gas), present the results of experimental
studies carried out on purpose to verify the method.

2. Group of works [9-13], which propose more
general methods, basing on a smaller number of
assumptions as above; if some calculational results, if
any, are given, they do not refer to any experimental
results.

Among the works of the latter group, the most
general and exact model of the condensation process of
multicomponent vapours in the presence of inert
components is given by Krishna et al. [11]. Here, as
well as in our own work [14], one has rejected for the
first time one simplifying assumption, introduced
formerly at the description of mass transport. One has
used, namely, general matrix equations which in a
physically correct manner predict mass fluxes in
multicomponent systems. Krishna e al. employed the
equations derived [16] by the exact solution (at the
assumption of the film theory) of Stefan- Maxwell
equations and, alternatively, the method worked out
by Toor [17] and independently by Stewart and
Prober [18].

In {14], while formulating the general mathemaucal
model of the process, one has proposed the direct
calculation of mass fluxes from the relationship
worked out by Burghardt and Krupiczka [19], which
enables to dispense with the iterative procedure. The
proposed model has been next sotved [15] for the
experimental condensers of Potter and Jeffreys [6],
Mizushina [7] and Schrodt-Gerhard [8] and the
results of calculations have been compared with the
experimental ones. It came out- as expected - that
the suggested model gave the results most close to the
experimental data, compared to the simplified me-
thods {[7,10]).

The aim of the present work was the application to
the general mathematical model of multicomponent
condensation in the presence of inerts, formulated in
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[ 14], of the remaining two methods of the description
of mass transport in multicomponent systems {Toor
and Stewart and Prober; Krishna and Standart), its
solution for the case of availability of experimental
data, followed by the comparison of all resulis ob-
tained at present and previously icomputational as
well as experimental ones).

The model formulated in [14], discussed m short
below. is --like the models of Schrodt and of Krishna
et al. - a one-dimensional model. Such an approach
has been determined by the fact that at the solution ofa
model for the turbulent flow it is necessary to make use
either of turbulence models. which render the problem
very complex and are not reliable for all geometries. or
of turbulence parameters determined experimentaliy,
Thus, both in the case of two-dimensional model and
one-dimensional one, the use of empirical parameters
is inevitable. The assumption a priori which of these
models will yield more accurate resulis is difficult, since
the final result will depend not only on model's
exactness but also on errors due {o empirical para-
meters. [tis certain, howcver, that the two-dimensional
model will be more sophisticated and its solution will
be connected with considerable computational diffi-
culties and will require larger time of computation as
well as digital computers of higher speed and larger
memory. The proposed one-dimensional model is not,
however, quite general, since it does not allow for fog-
containing vapour mixtures. Such mixtures had to be
disregarded of necessity, since in the case of multicom-
ponent vapours no criterion, even of estimative char-
acter, has been suggested which would enable the
determination both of the extent of its precipitation
and of composition. This model neither takes into
account the diffusional resistance in the liguid phasc it
is assumed to be negligible [117

2. ANALYSIS OF SIMULTANEOUS HEAT AND
MASS TRANSFER IN MULTICOMPONENT SYSTEMS
The simultaneous interphase heat and mass trans-
port in the case of finite mass fluxes, causing a
disturbance of temperature and concentration profiles
in the boundary layer, may bc most generally de-
scribed by equations (1) and (2){21]

g = a%* As i
N~ v z N, =0t =¥ phay o)
=t i
P12, I
or- -in matrix notation
N~y Z N; = J* = f¥{D)Ay. (2b)

j=1
Relationship (1) resembles Newton's equation with
heat transfer-coefficient o replaced by the coefficient
o*, allowing for the effect of finite mass fluxes on the
temperature profile

oa* = a0, (3)
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The form of the correction factor 6, in equation (3)
depends on the assumed transport theory. For exa-
mple, at the assumption of film theory it may be
determined for a multicomponent system from the
relationship

]

0,=—— 4a
S apo 1 (4a)
where
Z Nicpi
== (4b)
o

Expression f*(D) in equation (2b) represents the
matrix of mass-transfer coefficients, whereas D is the
matrix of diffusivities. There exist, as already men-
tioned, two methods of determining the matrix of
mass-transfer coefficients: method of Toor and Ste-
wart and Prober [17, 18] and method of Krishna and
Standart [16]. The main difference between these
methods consists in the assumption, made by the
former authors at the linearization of the system of
equations, of the constancy of diffusivities’ matrix
along the path of diffusion, whereas Krishna and
Standart take into account the concentration profile in
the film. So, from the theoretical view-point, the
solution of the latter authors is more exact. On the
other hand, there is no possibility in this case to use
correction factors 6 according to various transport
theories (as it may be done in the solution of Toor and
Stewart and Prober), since it has been derived only for
the film theory assumptions.

The determination of the fluxes N; from equation
(2b), if the J values are known, does not present any
serious difficulties. For the case under consideration,
these fluxes may be calculated from the relationship (5)

N=pP-J* (5)

where P is the matrix consisting of the following
elements

Py =0 + vi/vi i,j=12,....,m (6)

6;; is Kronecker’s deita, and y,—sum of concen-
trations of inert components.

At the determination of the fluxes N; by either of
both methods mentioned above, while calculating the
matrix f*(D) one has to assume initially the values of
mass fluxes and then to correct it iteratively. This
procedure, however, is rapidly convergent.

On the other hand, the method of Burghardt and
Krupiczka [19,20] permits to calculate directly the
mass fluxes, which reduces the computational time
considerably. The latter authors suggest the calcu-
lation of fluxes from equation (7)

N =) 2. ™
Yim

The matrix of mass-transfer coefficients (D) is
determined analogically as the matrix $*(D) in the
method of Toor and Stewart and Prober, matrix D’
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being, however, defined differently than matrix D:

D/=A—l (Sa)
where
I &y
A== T 2 i=12..m  (@§b)
Yro=y P
k#i
yi 1 .
== — Lj=12...,m (8c)
YI DU l#]

This solution has been derived from the system of
Stefan-Maxwell equations under the assumption of
film theory, similarly as Krishna and Standart did. It
does not take into account, however, the concentration
profiles in the film. Moreover, the method of approach
to the solution of this problem, used by the before
mentioned authors, differs considerably from the
method of Krishna and Standart. The value of the
integral mean y,,, may be calculated-—according to
authors’ suggestion—as the logarithmic mean, with-
out any appreciable error.

The above methods deal with mass fluxes de-
termined solely by concentration gradients. Since the
magnitudes of mass fluxes caused by other factors, e.g.
by temperature or pressure, are in the case of conden-
sation negligibly small compared to mass fluxes
referring to common diffusion [21], one has concluded
to disregard all remaining kinds of diffusion in the
description of mass phenomena of the process under
consideration.

3. DIFFERENTIAL EQUATIONS OF ENERGY AND
MASS BALANCES OF THE PROCESS AND
EQUILIBRIUM RELATIONSHIPS

Let us consider the differential element of a conden-
ser in Fig. 1. A mixture of vapours of m components
together with n—m inert components is flowing along
condenser’s wall. The condensate formed, consisting in
the most general case of m components, flows down the
wall in the same direction as vapour-gas mixture. On
the other side of the wall the cooling agent is flowing in
Cco- or counter-current to the vapour—gas mixture. The
mass balance of individual components in the gas- and
liquid phase and the energy balance of the gas phase
and of cooling agent, assuming that vapour—gas
mixture is monophasic (absence of fog) and the process
takes place without crossing the saturation line, yield
the following system of differential equations.

in 1 m
=—| v N.— N.

iF Gg[y,j; j N.J ©)
i=12....m

dx; 1 m

— = |N, —x. '

dF GI' %L Nf} (10)
i=L2,....m

dG,  dG, m

- TaF T LN (11
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In energy balances only the enthalpies of fluids and
heat fluxes transferred by convection or conduction
have been taken into account. All other energy kinds
have been disregarded.

If one assumes the thermodynamic equilibrium at
the interface, then the interphase equilibrium may be
most generally described by the relationship

iviP = piyix; i=12....m (14)

This equation enables t0 determine m—1 concen-
trations y; at the interface in equilibrium with the
liquid phase of the composition x; [22]. On the other
hand, the condition of thermal equilibrium at the
interface may be expressed as

Table 1. Results of statistical computations for the mole fractions of ethanol in the condensate, calculated
according to various versions of the proposed model and simplified Schrodt’s model, compared with the

Toor and

Stewart-Prober

(1}

Mean 0.9260
Variance 0.0029
Standard error of variance 0.0162
Standard deviation 0.0536

t 4.5796
Result of r-test positive

experimental data of Porter and Jeffreys (11 experimental data)

Krishna- Burghardt

Standart Krupiczka Schrodt
(21 (3)
09322 0.9301 09232
0.0032 0.0025 0.0010
0.0171 0.0150 0.0098
0.0567 0.0497 00324
3.9685 4.6696 7.8628%
positive negative

positive

Table 2. Results of statistical computations for the value of surface area of Mizushina's experimental
condenser, compared with the values obtained on the basis of calculations according to various versions of
the proposed model, simplified Schrodt’s model and three-point Mizushina’s method {23 experimental data)

Toor and
Stewart—Prober

(1)

0.1253

Mean

Variance 0.0001

Standard error of variance 0.0017

Standard deviation 0.0082

t 1.5992

Result of -test positive

Krishna Burghardt-

Standart Krupiczka Schrodt Mizushina
(2) (3

0.1253 0.1223 0.1172 0.1440
0.0001 0.0001 0.0001 0.0001
0.0017 0.0020 0.0023 0.0016
0.0080 0.0096 0.0109 0.0075
1.5992 2.8141 47674 10.1645
positive positive negative ncgzuivcr

Table 3. Results of statistical computations for the amount of condensate formed, calculated according to
various versions of the proposed model and simplified Schrodt’s model, compared with the experimental

Toor and

Stewart -Prober

(h

1.2306

Mean

Variance 0.0214
Standard error of variance 0.0553
Standard deviation 0.1462

t 4.1726
Result of t-test

positive

data of Schrodt-Gerhard (7 experimental data)

Krishna Burghardt-

Standart Krupiczka Schrodt
(2) (3)
1.2339 1.2364 1.2589
0.0224 0.0215 0.0218
0.0566 0.0554 0.0559
0.1497 0.1466 0.1478
4.1359 4.2666 46361
positive positive negative
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m
4.=4,+ Y, Nri (15)
i=1
This nonlinear equation permits to calculate the
unknown interfacial temperature by one of iterative

procedures [23].

4. RESULTS OF COMPARATIVE CALCULATIONS

The differential equations of energy and mass bal-
ances (5)-(13), together with equations (14), (15)
determining the interfacial equilibrium, relationships
(1)—(8) describing the transport of heat and mass as
well as with equations of the kinetics of heat and mass
transfer, constitute a system of equations which de-
scribe the process of simultaneous heat and mass
transfer at the condensation of multicomponent va-
pours in the presence of inerts. This system has been
solved numerically for the experimental condensers of :
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Potter and Jeffreys, Mizushina and Schrodt and
Gerhard, applying for the assumptions of the film
theory the above-discussed versions of the description
of mass transport and assuming that the diffusional
resistance in ideally mixed liquid phase may be
disregarded [11].

The adequacy of the individual versions of the
proposed model and of Schrodt’s model has been
estimated by means of statistical methods. In the case
of Porter and Jeffreys” data the estimation basis was
the random variable equal to the ratio of the value of
mole fraction of ethanol, determined for the individual
sections of the condenser from the solution of in-
dividual models, to the experimental value. The null
hypothesis Hy:u=1 has been verified by means of
Student’s ¢ test. The results of statistical calculations
are given in Table 1. For the statistical estimation of
the considered models on the basis of experimental
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FiG. 2. Histograms of distribution of random variable obtained from the individual versions of the proposed
model, Schrodt’s model and Mizushina’s three-point method, on the basis of Mizushina’s experimental data.
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data of Mizushina et al. one has assumed directly the
magnitude of the computed surface area, necessary to
attain the degree of condensation equal to the experi-
mental value. Also the three-point method, proposed by
Mizushina, has been subject to estimation. The value
of the area of the experimental condenser was the basis
for the formulation of null hypothesis H:u=0.128.
Table 2 contains the calculational results. In order to
carry out the estimation of the models under con-
sideration on the basis of Schrodt-Gerhard’s data, one
has calculated the amount of condensed vapours. The
random variable and the null hypothesis have been
defined analogically as in the case of Porter and
Jeffreys’ data. The results of statistical calculations are
shown in Table 3.

Analysing the results in Tables 1 and 2 one can find
that at the significance level 0.001 the null hypothesis is
true only for the versions of the proposed model.
Analogical conclusion may be drawn in the case of
comparison with Schrodt-Gerhard’s experimental
data, but assuming a slightly higher significance level.

The lowest value of test 7, i.e. the smallest probability
that the value obtained from the model will differ
significantly from the experimental value was yielded
by the version of calculations according to the method
of Krishna and Standart. In order to ascertain. if the
differences in computational results between indi-
vidual versions of the proposed model are significant,
the analysis of variance and estimation by means of F
test has been carried out. Under the assumption of the
significance level 0.05 it has been found that the results
obtained from individual versions do not differ
significantly.

The histograms presented in Fig. 2 show the distri-
bution of the random variable obtained on the basis of
Mizushina’s experimental data. These histograms il-
lustrate the correctness of the last statement.

Recapitulating, it may be concluded that adequacy
of all three versions of the proposed model (1), (2) and
(3) is nearly the same. The most accurate version
proved to be one based on Krishna and Standart’s
method but the difference with respect to the remain-
ing two versions is rather insignificant. Hence, the
choice of some version or other should be additionally
determined by the corresponding time consumption of
computer. In this respect the most rapid version of the
proposed model is, of course, the non-iterative method
of Burghardt and Krupiczka, whereas the slowest one
(ca 3 times slower) is the version based on the method
of Krishna and Standart.
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SUR LA CONDENSATION DE MELANGES DE VAPEURS EN PRESENCE DE GAZ INERTES

Résumé—On analyse les transferts simultanés de chaleur et de masse pour la condensation de mélanges de

vapeurs en présence de gaz inertes. Les résultats des calculs numériques des condenseurs, basés sur des

versions individuelles de modéle de mécanisme et résultant de la description différente du transfert massique

ont été comparés avec les données expérimentales connues. On trouve que le meilleur accord est obtenu dans

le cas d’une variante de la méthode de Krishna—Standart, tandis que le plus court temps de dalcul est obtenu

par une variante de la méthode de Burghardt-Krupiezka qui donne des résultats ne différant pas trés
sensiblement des plus précis.

UBER DIE KONDENSATION VON MEHRSTOFFDAMPFGEMISCHEN
BEI ANWESENHEIT VON INERTGASEN

Zusammenfassung — Der Bericht befafit sich mit der Analyse von gleichzeitigem Wirme- und Stoffiibergang
bei der Kondensation von Mehrstoffdampfgemischen in Anwesenheit von inerten Komponenten. Die
Ergebnisse der numerischen Berechnung von Kondensatoren, die auf der Lésung der einzelnen Modellver-
sionen basieren, welche sich aus den verschiedenen Beschreibungen des Stoffiibergangs von Mehrstoffsys-
temen ergaben, wurden mit den vorhandenen experimentell ermittelten Werten verglichen. Es wurde
festgestellt, daB die beste Ubereinstimmung mit der Variante erhalten wurde, die auf der Krishna—Standart-
Methode basierte, wihrend die kiirzeste Rechenzeit fiir die Variante nach der Burghardt-Krupiczka-
Methode bendtigt wurde, wobei sich die hierbei erhaltenen Ergebnisse nicht signifikant von denen der
genauesten Berechnungen unterschieden.

O KOHAEHCALIMY MHOI'OKOMIIOHEHTHBIX MAPOB B NMPUCYTCTBUHU
HWHEPTHBIX T'A30B

Annoraums — [IpoBeieH aHaNH3 OMHOBPEMEHHOTO TEIUIO- H MACCONEPEHOCA IPH KOHICHCALHH MHOFO-
KOMIIOHEHTHOTO Napa B MPHCYTCTBHH MHEPTHBIX KOMIOHEHTOB. Pe3y/IbTaThl YHCIEHHBIX PACUETOB KOH-
JIEHCATOPOB, OCHOBAHHBIX HA PEIICHHH Pa3iMYHBIX BAPHAHTOB MO/IENIH npoliecca, 00 A3aHHBIX pa3IMHOM
HHTEPNPETALMH MHOTOKOMIOHEHTHOTO TIEPEHOCA MACChl, CPABHUBAIHCH C UMEIOLIMMHCH KCIIEPHMEH-
TaJlbHBIMH JaHHbIMH. Hamnyuillee coBnafeHHe pe3yabTaTOB MOJIYyYEHO [t BADHAHTA, OCHOBAHHOTO Ha
metone Kpuinei-lltanaapra, B To BpemMs Kak BapHaHT, OCHOBaHHBIH Ha MmeToze Byprapara-
Kpynuuky, noTpe6oBan caMoro MHHAMANIbHOTO KOJIMYECTBA MAILIMHHOTO BPEMEHH M Aaj pe3ynbTaThl,
[I0BONBLHO GJIN3KO COBNAJAIOLIME ¢ TOYHBIMH JaHHBIMH.
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